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A Level Set Method for Image Segmentation
in the Presence of Intensity Inhomogeneities
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Abstract—Intensity inhomogeneity often occurs in real-world
images, which presents a considerable challenge in image segmen-
tation. The most widely used image segmentation algorithms are
region-based and typically rely on the homogeneity of the image
intensities in the regions of interest, which often fail to provide
accurate segmentation results due to the intensity inhomogeneity.
This paper proposes a novel region-based method for image
segmentation, which is able to deal with intensity inhomogeneities
in the segmentation. First, based on the model of images with
intensity inhomogeneities, we derive a local intensity clustering
property of the image intensities, and define a local clustering cri-
terion function for the image intensities in a neighborhood of each
point. This local clustering criterion function is then integrated
with respect to the neighborhood center to give a global criterion
of image segmentation. In a level set formulation, this criterion
defines an energy in terms of the level set functions that represent a
partition of the image domain and a bias field that accounts for the
intensity inhomogeneity of the image. Therefore, by minimizing
this energy, our method is able to simultaneously segment the
image and estimate the bias field, and the estimated bias field can
be used for intensity inhomogeneity correction (or bias correc-
tion). Our method has been validated on synthetic images and real
images of various modalities, with desirable performance in the
presence of intensity inhomogeneities. Experiments show that our
method is more robust to initialization, faster and more accurate
than the well-known piecewise smooth model. As an application,
our method has been used for segmentation and bias correction of
magnetic resonance (MR) images with promising results.

Index Terms—Bias correction, image segmentation, intensity in-
homogeneity, level set, MRI.

I. INTRODUCTION

I NTENSITY inhomogeneity often occurs in real-world im-
ages due to various factors, such as spatial variations in il-

lumination and imperfections of imaging devices, which com-

Manuscript received November 24, 2008; revised June 04, 2009; accepted
February 22, 2010. Date of publication April 21, 2011; date of current version
June 17, 2011. The associate editor coordinating the review of this manuscript
and approving it for publication was Prof. Erik H. W. Meijering.

C. Li was with the Institute of Imaging Science, Vanderbilt University,
Nashville, TN 37232 USA. He is now with the Department of Radi-
ology, University of Pennsylvania, Philadelphia, PA 19104 USA (e-mail:
lchunming@gmail.com)

R. Huang and D. N. Metaxas are with Department of Computer Science, Rut-
gers University, Piscataway, NJ 08854 USA (e-mail: ruihuang@cs.rutgers.edu;
dnm@cs.rutgers.edu).

Z. Ding and J. C. Gore are with the Institute of Imaging Science, Vanderbilt
University, Nashville, TN 37232 USA (e-mail: zhaohua.ding@vanderbilt.edu;
john.gore@vanderbilt.edu).

J. C. Gatenby was with the Institute of Imaging Science, Vanderbilt Univer-
sity, Nashville, TN 37232 USA. He is now with the Department of Radiology,
University of Washington, Seattle, WA 98195 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2011.2146190

plicates many problems in image processing and computer vi-
sion. In particular, image segmentation may be considerably dif-
ficult for images with intensity inhomogeneities due to the over-
laps between the ranges of the intensities in the regions to seg-
mented. This makes it impossible to identify these regions based
on the pixel intensity. Those widely used image segmentation
algorithms [4], [17], [18], [23] usually rely on intensity homo-
geneity, and therefore are not applicable to images with intensity
inhomogeneities. In general, intensity inhomogeneity has been
a challenging difficulty in image segmentation.

The level set method, originally used as numerical technique
for tracking interfaces and shapes [14], has been increasingly
applied to image segmentation in the past decade [2], [4], [5],
[8]–[12], [15]. In the level set method, contours or surfaces are
represented as the zero level set of a higher dimensional func-
tion, usually called a level set function. With the level set rep-
resentation, the image segmentation problem can be formulated
and solved in a principled way based on well-established mathe-
matical theories, including calculus of variations and partial dif-
ferential equations (PDE). An advantage of the level set method
is that numerical computations involving curves and surfaces
can be performed on a fixed Cartesian grid without having to
parameterize these objects. Moreover, the level set method is
able to represent contours/surfaces with complex topology and
change their topology in a natural way.

Existing level set methods for image segmentation can be cat-
egorized into two major classes: region-based models [4], [10],
[17], [18], [20], [22] and edge-based models [3], [7], [8], [12],
[21]. Region-based models aim to identify each region of in-
terest by using a certain region descriptor to guide the motion
of the active contour. However, it is very difficult to define a re-
gion descriptor for images with intensity inhomogeneities. Most
of region-based models [4], [16]–[18] are based on the assump-
tion of intensity homogeneity. A typical example is piecewise
constant (PC) models proposed in [4], [16]–[18]. In [20], [22],
level set methods are proposed based on a general piecewise
smooth (PS) formulation originally proposed by Mumford and
Shah [13]. These methods do not assume homogeneity of image
intensities, and therefore are able to segment images with inten-
sity inhomogeneities. However, these methods are computation-
ally too expensive and are quite sensitive to the initialization of
the contour [10], which greatly limits their utilities. Edge-based
models use edge information for image segmentation. These
models do not assume homogeneity of image intensities, and
thus can be applied to images with intensity inhomogeneities.
However, this type of methods are in general quite sensitive to
the initial conditions and often suffer from serious boundary
leakage problems in images with weak object boundaries.

1057-7149/$26.00 © 2011 IEEE
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on July 15,2023 at 06:13:31 UTC from IEEE Xplore.  Restrictions apply. 



2008 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 7, JULY 2011

In this paper, we propose a novel region-based method for
image segmentation. From a generally accepted model of im-
ages with intensity inhomogeneities, we derive a local intensity
clustering property, and therefore define a local clustering crite-
rion function for the intensities in a neighborhood of each point.
This local clustering criterion is integrated over the neighbor-
hood center to define an energy functional, which is converted to
a level set formulation. Minimization of this energy is achieved
by an interleaved process of level set evolution and estimation
of the bias field. As an important application, our method can
be used for segmentation and bias correction of magnetic reso-
nance (MR) images. Note that this paper is an extended version
of our preliminary work presented in our conference paper [9].

This paper is organized as follows. We first review two
well-known region-based models for image segmentation in
Section II. In Section III, we propose an energy minimization
framework for image segmentation and estimation of bias
field, which is then converted to a level set formulation in
Section IV for energy minimization. Experimental results are
given in Section V, followed by a discussion of the relationship
between our model and the piecewise smooth Mumford–Shah
and piecewise constant Chan–Vese models in Section VI. This
paper is summarized in Section VII.

II. BACKGROUND

Let be the image domain, and be a gray level
image. In [13], a segmentation of the image is achieved by
finding a contour , which separates the image domain into
disjoint regions , and a piecewise smooth function

that approximates the image and is smooth inside each re-
gion . This can be formulated as a problem of minimizing the
following Mumford-Shah functional

(1)

where is the length of the contour . In the right hand side of
(1), the first term is the data term, which forces to be close to
the image , and the second term is the smoothing term, which
forces to be smooth within each of the regions separated by
the contour . The third term is introduced to regularize the
contour .

Let be the regions in separated by the con-
tour , i.e. . Then, the contour can be ex-
pressed as the union of the boundaries of the regions, denoted
by , i.e. . Therefore, the above energy

can be equivalently written as

where is a smooth function defined on the region . The
methods aiming to minimize this energy are called piecewise
smooth (PS) models. In [20], [22], level set methods were pro-
posed as PS models for image segmentation.

The variables of the energy include different func-
tions . The smoothness of each function in has

to be ensured by imposing a smoothing term
in the functional . To minimize this energy, PDEs
for solving the functions associated with the cor-
responding smoothing terms are introduced and have to be
solved at each time step in the evolution of the contour or the
regions . This procedure is computationally expen-
sive. Moreover, the PS model is sensitive to the initialization
of the contour or the regions . These difficulties
can be seen from some experimental results in Section V-A.

In a variational level set formulation [4], Chan and Vese sim-
plified the Mumford-Shah functional as the following energy:

(2)

where is the Heaviside function, and is a level set function,
whose zero level contour partitions the
image domain into two disjoint regions

and . The first two terms in (2)
are the data fitting terms, while the third term, with a weight

, regularizes the zero level contour. Image segmentation
is therefore achieved by find the level set function and the
constants and that minimize the energy . This model
is a piecewise constant (PC) model, as it assumes that the image

can be approximated by constants and in the regions
and , respectively.

III. VARIATIONAL FRAMEWORK FOR JOINT SEGMENTATION

AND BIAS FIELD ESTIMATION

A. Image Model and Problem Formulation

In order to deal with intensity inhomogeneities in image seg-
mentation, we formulate our method based on an image model
that describes the composition of real-world images, in which
intensity inhomogeneity is attributed to a component of an
image. In this paper, we consider the following multiplicative
model of intensity inhomogeneity. From the physics of imaging
in a variety of modalities (e.g. camera and MRI), an observed
image can be modeled as

(3)

where is the true image, is the component that accounts for
the intensity inhomogeneity, and is additive noise. The com-
ponent is referred to as a bias field (or shading image). The true
image measures an intrinsic physical property of the objects
being imaged, which is therefore assumed to be piecewise (ap-
proximately) constant. The bias field is assumed to be slowly
varying. The additive noise can be assumed to be zero-mean
Gaussian noise.

In this paper, we consider the image as a function
defined on a continuous domain . The assumptions about the

true image and the bias field can be stated more specifically
as follows:
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(A1) The bias field is slowly varying, which implies that
can be well approximated by a constant in a neighborhood
of each point in the image domain.
(A2) The true image approximately takes distinct con-
stant values in disjoint regions , re-
spectively, where forms a partition of the image
domain, i.e. and for

based on the model in (3) and the assumptions A1 and A2,
we propose a method to estimate the regions , the con-
stants , and the bias field . The obtained estimates of

them are denoted by , the constants , and the
bias field , respectively. The obtained bias field should be
slowly varying and the regions should satisfy cer-
tain regularity property to avoid spurious segmentation results
caused by image noise. We will define a criterion for seeking
such estimates based on the above image model and assump-
tions A1 and A2. This criterion will be defined in terms of the
regions , constants , and function , as an energy in a vari-
ational framework, which is minimized for finding the optimal

regions , constants , and bias field . As a re-
sult, image segmentation and bias field estimation are simulta-
neously accomplished.

B. Local Intensity Clustering Property

Region-based image segmentation methods typically relies
on a specific region descriptor (e.g. intensity mean or a Gaussian
distribution) of the intensities in each region to be segmented.
However, it is difficult to give such a region descriptor for im-
ages with intensity inhomogeneities. Moreover, intensity inho-
mogeneities often lead to overlap between the distributions of
the intensities in the regions . Therefore, it is impos-
sible to segment these regions directly based on the pixel inten-
sities. Nevertheless, the property of local intensities is simple,
which can be effectively exploited in the formulation of our
method for image segmentation with simultaneous estimation
of the bias field.

based on the image model in (3) and the assumptions A1
and A2, we are able to derive a useful property of local intensi-
ties, which is referred to as a local intensity clustering property
as described and justified below. To be specific, we consider
a circular neighborhood with a radius centered at each point

, defined by . The partition
of the entire domain induces a partition of the neigh-

borhood , i.e., forms a partition of . For a
slowly varying bias field , the values for all in the cir-
cular neighborhood are close to , i.e.

for (4)

Thus, the intensities in each subregion are
close to the constant , i.e.

for (5)

Then, in view of the image model in (3), we have

for

where is additive zero-mean Gaussian noise. Therefore,
the intensities in the set

form a cluster with cluster center , which can be
considered as samples drawn from a Gaussian distribution with
mean . Obviously, the clusters , are well-sepa-
rated, with distinct cluster centers ,
(because the constants are distinct and the variance
of the Gaussian noise is assumed to be relatively small). This
local intensity clustering property is used to formulate the pro-
posed method for image segmentation and bias field estimation
as follows.

C. Energy Formulation

The above described local intensity clustering property indi-
cates that the intensities in the neighborhood can be classi-
fied into clusters, with centers , .
This allows us to apply the standard K-means clustering to clas-
sify these local intensities. Specifically, for the intensities
in the neighborhood , the K-means algorithm is an iterative
process to minimize the clustering criterion [19], which can be
written in a continuous form as

(6)

where is the cluster center of the -th cluster, is the mem-
bership function of the region to be determined, i.e.

for and for . Since is the mem-
bership function of the region , we can rewrite as

(7)

In view of the clustering criterion in (7) and the approxima-
tion of the cluster center by , we define a clustering
criterion for classifying the intensities in as

(8)

where is introduced as a nonnegative window func-
tion, also called kernel function, such that for

. With the window function, the clustering criterion
function can be rewritten as

(9)

This local clustering criterion function is a basic element in the
formulation of our method.

The local clustering criterion function evaluates the clas-
sification of the intensities in the neighborhood given by the
partition of . The smaller the value of , the
better the classification. Naturally, we define the optimal parti-
tion of the entire domain as the one such that the
local clustering criterion function is minimized for all in
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. Therefore, we need to jointly minimize for all in . This
can be achieved by minimizing the integral of with respect
to over the image domain . Therefore, we define an energy

, i.e.,

(10)

In this paper, we omit the domain in the subscript of the in-
tegral symbol (as in the first integral above) if the integration
is over the entire domain . Image segmentation and bias field
estimation can be performed by minimizing this energy with re-
spect to the regions , constants , and bias
field .

The choice of the kernel function is flexible. For example,
it can be a truncated uniform function, defined as
for and for , with being a positive
constant such that . In this paper, the kernel function

is chosen as a truncated Gaussian function defined by

for
otherwise

(11)

where is a normalization constant such that , is
the standard deviation (or the scale parameter) of the Gaussian
function, and is the radius of the neighborhood .

Note that the radius of the neighborhood should be se-
lected appropriately according to the degree of the intensity in-
homogeneity. For more localized intensity inhomogeneity, the
bias field varies faster, and therefore the approximation in (4)
is valid only in a smaller neighborhood. In this case, a smaller

should be used as the radius of the neighborhood , and for
the truncated Gaussian function in (11), the scale parameter
should also be smaller.

IV. LEVEL SET FORMULATION AND ENERGY MINIMIZATION

Our proposed energy in (10) is expressed in terms of the
regions . It is difficult to derive a solution to the
energy minimization problem from this expression of . In this
section, the energy is converted to a level set formulation by
representing the disjoint regions with a number of
level set functions, with a regularization term on these level set
functions. In the level set formulation, the energy minimization
can be solved by using well-established variational methods [6].

In level set methods, a level set function is a function that
take positive and negative signs, which can be used to represent
a partition of the domain into two disjoint regions and .
Let be a level set function, then its signs define two
disjoint regions

and (12)

which form a partition of the domain . For the case of
, two or more level set functions can be used to represent

regions . The level set formulation of the energy
for the cases of and , called two-phase and

multiphase formulations, respectively, will be given in the next
two subsections.

A. Two-Phase Level Set Formulation

We first consider the two-phase case: the image domain is
segmented into two disjoint regions and . In this case, a
level set function is used to represent the two regions and

given by (12). The regions and can be represented
with their membership functions defined by
and , respectively, where is the Heaviside
function. Thus, for the case of , the energy in (10) can be
expressed as the following level set formulation:

(13)
By exchanging the order of integrations, we have

(14)
For convenience, we represent the constants with

a vector . Thus, the level set function , the
vector , and the bias field are the variables of the energy ,
which can therefore be written as . From (14), we can
rewrite the energy in the following form:

(15)

where is the function defined by

(16)

The functions can be computed using the following equiva-
lent expression:

(17)

where is the convolution operation, and is the function
defined by , which is equal to constant
1 everywhere except near the boundary of the image domain .

The above defined energy is used as the data term
in the energy of the proposed variational level set formulation,
which is defined by

(18)

with and being the regularization terms as defined
below. The energy term is defined by

(19)

which computes the arc length of the zero level contour of
and therefore serves to smooth the contour by penalizing its arc
length [4], [10]. The energy term is defined by

(20)
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with a potential (energy density) function such
that for all , i.e. is a minimum point
of . In this paper, we use the potential function defined by

. Obviously, with such a potential , the en-
ergy is minimized when , which is the charac-
teristic of a signed distance function, called the signed distance
property. Therefore, the regularization term is called a
distance regularization term, which was introduced by Li et al.
[11] in a more general variational level set formulation called
distance regularized level set evolution (DRLSE) formulation.
The readers are referred to [11] for the necessity and the mech-
anism of maintaining the signed distance property of the level
set function in DRLSE.

By minimizing this energy, we obtain the result of image
segmentation given by the level set function and the estima-
tion of the bias field . The energy minimization is achieved by
an iterative process: in each iteration, we minimize the energy

with respect to each of its variables , , and , given
the other two updated in previous iteration. We give the solu-
tion to the energy minimization with respect to each variable as
follows.

1) Energy Minimization With Respect to : For fixed and ,
the minimization of with respect to can be achieved
by using standard gradient descent method, namely, solving the
gradient flow equation

(21)

where is the Gâteaux derivative [1] of the energy .
By calculus of variations [1], we can compute the Gâteaux

derivative and express the corresponding gradient flow
equation as

(22)

where is the gradient operator, is the divergence oper-
ator, and the function is defined as

The same finite difference scheme to implement the DRLSE, as
described in [11], can be used for the level set evolution (22).
During the evolution of the level set function according to (22),
the constants and in and the bias field are updated
by minimizing the energy with respect to and ,
respectively, which are described below.

2) Energy Minimization With Respect to : For fixed and
, the optimal that minimizes the energy , denoted

by , is given by

(23)

with .

3) Energy Minimization With Respect to : For fixed and
, the optimal that minimizes the energy , denoted

by , is given by

(24)

where and . Note that
the convolutions with a kernel function in (24) confirms the
slowly varying property of the derived optimal estimator of
the bias field.

B. Multiphase Level Set Formulation

For the case of , we can use two or more level set
functions to define membership functions of
the regions , , such that

else.

For example, in the case of , we use two level set
functions and to define ,

, and
to give a three-phase level set formulation of our

method. For the four-phase case , the definition of
can be defined as ,

, , and
.

For notational simplicity, we denote these level set functions
by a vector valued function .

Thus, the membership functions can be
written as . The energy in (10) can be converted to a
multiphase level set formulation

with given by (16).
For the function , we define the regulariza-

tion terms and ,
where and are defined by (19) and (20) for each
level set function , respectively. The energy functional in
our multiphase level set formulation is defined by

(25)

The minimization of the energy in (25) with re-
spect to the variable can be performed by
solving the following gradient flow equations:

...

(26)

The minimization of the energy can be achieved by
the same procedure as in the two-phase case. And it is easy to
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show that optimal and that minimize the energy
are given by (23) and (24), with for .

C. Numerical Implementation

The implementation of our method is straightforward. The
level set evolution in (22) and (26) can be implemented by using
the same finite difference scheme as for the DRLSE provided
in [11]. While we use an easy full domain implementation to
implement the proposed level set method in this paper, it is
worth pointing out that the narrow band implementation of the
DRLSE, provided in [11], can be also used to implement the
proposed method, which would greatly reduce the computa-
tional cost and make the algorithm significantly faster than the
full domain implementation.

In numerical implementation, the Heaviside function is
replaced by a smooth function that approximates , called the
smoothed Heaviside function , which is defined by

(27)

with as in [4], [10]. Accordingly, the dirac delta func-
tion , which is the derivative of the Heaviside function , is
replaced by the derivative of , which is computed by

(28)

At each time step, the constant and the bias
field are updated according to (23) and (24), with
defined in Section IV. Notice that the two convolutions
and in (17) for the computation of also appear in the
computation of in (23) for all . Another two
convolutions and are computed in (24)
for the bias field . Thus, there are a total of four convolutions
to be computed at each time step during the evolution of . The
convolution kernel is constructed as a mask, with
being the smallest odd number such that , when

is defined as the Gaussian kernel in (11). For example, given
a scale parameter , the mask size is 17 17.

The choice of the parameters in our model is easy. Some of
them, such as the parameters and the time step , can be
fixed as and . Our model is not sensitive
to the choice of the parameters. The parameter is usually set
to as a default value for most of digital images
with intensity range in [0, 255]. The parameter and the size
of the neighborhood (specified by its radius ) should be
relatively smaller for images with more localized intensity in-
homogeneities as we have mentioned in Section III-C.

V. EXPERIMENTAL RESULTS

We first demonstrate our method in the two-phase case (i.e.
). Unless otherwise specified, the parameter is set to 4

for the experiments in this section. All the other parameters are
set to the default values mentioned in Section IV-C. Fig. 1 shows
the results for a camera image of limon and a computed tomog-
raphy angiography (CTA) image of blood vessel. The curve evo-
lution processes are depicted by showing the initial contours (in
the left column), intermediate contours (in the middle column),

Fig. 1. Segmentation for an image of limon (upper row) and a CT image of
vessel (lower row). The left, middle, and right columns show the initial con-
tours (a triangle for the limon image and a quadrangle for the vessel image), the
intermediate contours, and the final contours, respectively.

and the final contours (in the right column) on the images. In-
tensity inhomogeneities can be clearly seen in these two images.
Our method is able to provide a desirable segmentation result for
such images.

The estimated bias field by our method can be used for in-
tensity inhomogeneity correction (or bias correction). Given the
estimated bias field , the bias corrected image is computed as
the quotient . To demonstrate the effectiveness of our method
in simultaneous segmentation and bias field estimation, we ap-
plied it to three medical images with intensity inhomogeneities:
an MR image of breast, an X-ray image of bones, and an ultra-
sound image of prostate. These images exhibit obvious intensity
inhomogeneities. The ultrasound image is also corrupted with
serious speckle noise. We applied a convolution with a Gaussian
kernel to smooth the ultrasound image as a preprocessing step.
The scale parameter of the Gaussian kernel is chosen as 2.0
for smoothing this ultrasound image. The initial contours are
plotted on the original images in Column 1 of Fig. 2. The cor-
responding results of segmentation, bias field estimation, and
bias correction are shown in Columns 2, 3, and 4, respectively.
These results demonstrate desirable performance of our method
in segmentation and bias correction.

A. Performance Evaluation and Method Comparison

As a level set method, our method provides a contour as
the segmentation result. Therefore, we use the following con-
tour-based metric for precise evaluation of the segmentation re-
sult. Let be a contour as a segmentation result, and be the
true object boundary, which is also given as a contour. For each
point , , on the contour , we can compute the
distance from the point to the ground truth contour , de-
noted by . Then, we define the deviation from the
contour to the ground truth by

which is referred to as the mean error of the contour . This
contour-based metric can be used to evaluate a subpixel accu-
racy of a segmentation result given by a contour.
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Fig. 2. Applications of our method to an MR image of breast, an X-ray image
of bones, and an ultrasound image of prostate. Column 1: Initial contour on
the original image; Column 2: Final contours; Column 3: Estimated bias field;
Column 4: Bias corrected image.

Fig. 3. Robustness of our method to contour initializations is demonstrated by
its results for an synthetic image in (a) with different initial contours. The initial
contours (white contours) and corresponding segmentation results (black con-
tours) are shown in (b–d).

1) Robustness to Contour Initialization: With the above met-
rics, we are able to quantitatively evaluate the performance of
our method with different initializations and different settings
of parameters. We applied our method to a synthetic image in
Fig. 3 with 20 different initializations of the contour and the
constants . For examples, we show three of the 20
initial contours (white contours) and the corresponding results
(black contours) in Fig. 3. In these three different initializations,
the initial contour encloses the objects of interest [in Fig. 3(b)],
crosses the objects [in Fig. 3(c)], and totally inside of one ob-
ject [in Fig. 3(d)]. Despite the great difference of these initial
contours, the corresponding results are almost the same, all ac-
curately capturing the object boundaries. The segmentation ac-
curacy is quantitatively verified by evaluating these results in
terms of mean errors. The mean errors of these results are all
between 0.21 and 0.24 pixel, as shown in Fig. 4(a). These ex-
periments demonstrate the robustness of our model to contour
initialization and a desirable accuracy at subpixel level.

2) Stable Performance for Different Scale Parameters: We
also tested the performance of our method with different scale
parameters , which is the most important parameter in our
model. For this image, we applied our method with 12 different
values of from 4 to 15. The corresponding mean errors of these
12 results are plotted in Fig. 4(b). While the mean error increases
as increases, it is below 0.5 pixel for all the 12 different values
of used in this experiment.

Fig. 4. Segmentation accuracy of our method for different initializations and
different scale parameters �. (a) Mean errors of the results for 20 different ini-
tializations; (b) Mean errors of the results for 12 different scale parameters �,
with � � �� �� � � � � ��.

Fig. 5. Performances of our method and the PS model in different image
conditions (e.g. different noise, intensity inhomogeneities, and weak object
boundaries). Top row: Initial contours plotted on the original image; Middle
row: Results of our method; Bottom row: Results of the PS model.

Fig. 6. Comparison of our model and the PS model in terms of accuracy and
CPU time. (a) Mean errors. (b) CPU times.

B. Comparison With Piecewise Smooth Model

We can also quantitatively compare our method with the PS
model on synthetic images. We generated 15 different images
with the same objects, whose boundaries are known and used as
the ground truth. These 15 images are generated by smoothing
an ideal binary image, adding intensity inhomogeneities of dif-
ferent profiles and different levels of noise. Fig. 5 show three
of these images as examples, with the corresponding results of
our model and the PS model in the middle and bottom rows, re-
spectively. We use the same initial contour (the circles in the top
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Fig. 7. Applications of our method to 3T MR images. Column 1: Original image; Column 2: Final zero level contours of � (red) and � (blue), i.e. the segmen-
tation result; Column 3: Estimated bias fields; Column 4: Bias corrected images; Column 5: Histograms of the original images (left) and bias corrected images
(right).

row) for the two models and all the 15 images. It is obvious that
our model produces more accurate segmentation results than the
PS model. To quantitatively evaluate the accuracy, we compute
the mean errors of both models for all the 15 images, which
are plotted in Fig. 6(a), where the -axes represent 15 different
images. As shown in Fig. 6(a), the errors of our model are sig-
nificantly lower than those of the PS model.

On the other hand, our model is much more efficient than
the PS model. This can be seen from the CPU times consumed
by the two models for the 15 images [see Fig. 6(b)]. In this
experiment, our model is remarkably faster than the PS model,
with an average speed-up factor 36.43 in our implementation.
The CPU times in this experiment were recorded in running our
Matlab programs on a Lenovo ThinkPad notebook with Intel (R)
Core (TM)2 Duo CPU, 2.40 GHz, 2 GB RAM, with Matlab 7.4
on Windows Vista.

C. Application to MR Image Segmentation and Bias Correction

In this subsection, we focus on the application of the pro-
posed method to segmentation and bias correction of brain MR
images. We first show the results for 3T MR images in the first
column of Fig. 7. These images exhibit obvious intensity in-
homogeneities. The segmentation results, computed bias fields,
bias corrected images, are shown in the second, third, and fourth
column respectively. It can be seen that the intensities within
each tissue become quite homogeneous in the bias corrected im-
ages. The improvement of the image quality in terms of intensity
homogeneity can be also demonstrated by comparing the his-
tograms of the original images and the bias corrected images.
The histograms of the original images (left) and the bias cor-
rected images (right) are plotted in the fifth column. There are
three well-defined and well-separated peaks in the histograms
of the bias corrected image, each corresponding to a tissue or
the background in the image. In contrast, the histograms of the

Fig. 8. Application to a 7T MR image. (a) Original image; (b) Bias corrected
image; (c) Computed bias field.

original images do not have such well-separated peaks due to
the mixture of the intensity distribution caused by the bias.

Our method has also been tested on 7T MR images with
promising results. At 7T, significant gains in image resolution
can be obtained due to the increase in signal-to-noise ratio.
However, susceptibility-induced gradients scale with the main
field, while the imaging gradients are currently limited to
essentially the same strengths as used at lower field strengths
(i.e., 3T). Such effects are most pronounced at air/tissue inter-
faces, as can be seen at the base of the frontal lobe in Fig. 8(a).
This appears as a highly localized and strong bias, which is
challenging to traditional methods for bias correction. The
result for this image shows the ability of our method to correct
such bias, as shown in Fig. 8(b) and (c).

VI. RELATION WITH PIECEWISE CONSTANT AND

PIECEWISE SMOOTH MODELS

It is worth pointing out that our model in the two-phase level
set formulation in (14) is a generalization of the well-known
Chan-Vese model [4], which is a representative piecewise con-
stant model. Our proposed energy in (14) reduces to the data
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fitting term in Chan-Vese model when the bias field is a con-
stant . To show this, we need the fact that

and recall that and . Thus,
for the case of , by changing the order of summation and
integration in (14), the energy can be rewritten as

which is exactly the data fitting term in the Chan-Vese model
(2). The Chan-Vese model is a piecewise constant model, which
aims to find constants and that approximate the image
in the regions and , respectively.

Our model is also closely related to the piecewise smooth
Mumford-Shah model. The Mumford-Shah model performs
image segmentation by seeking smooth functions
defined on disjoint regions , respectively,
through a computationally expensive procedure as briefly
described in Section II.

Different from the Mumford-Shah model, our model aims to
find the multiplicative components of the image : a smooth
function and a piecewise constant function . The obtained

and yield a piecewise smooth function as an approxima-
tion of the image . From the energy minimization processes in
our method and the Mumford-Shah model as described before,
it is clear that the former obtains the piecewise smooth approx-
imation, thereby yielding the image segmentation result, in a
much more efficient way than the latter.

VII. CONCLUSION

We have presented a variational level set framework for
segmentation and bias correction of images with intensity
inhomogeneities. Based on a generally accepted model of
images with intensity inhomogeneities and a derived local
intensity clustering property, we define an energy of the level
set functions that represent a partition of the image domain
and a bias field that accounts for the intensity inhomogeneity.
Segmentation and bias field estimation are therefore jointly
performed by minimizing the proposed energy functional.
The slowly varying property of the bias field derived from
the proposed energy is naturally ensured by the data term
in our variational framework, without the need to impose an
explicit smoothing term on the bias field. Our method is much
more robust to initialization than the piecewise smooth model.
Experimental results have demonstrated superior performance
of our method in terms of accuracy, efficiency, and robustness.

As an application, our method has been applied to MR image
segmentation and bias correction with promising results.
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